$\left(\rho v^{2}\right)_{55}$ refer to the two transverse wave. The term $\left(\rho^{2}\right)_{66}$ refers to particle motion perpendicular to the " C " axis and the term $\left(\rho v^{2}\right)_{55}$ refers to particle motion in a plane contain ing X ' and the " c " axis. The pertinent relations between the primed and conventional elastic constants are

$$
\begin{aligned}
& C_{11}^{\prime}=\sin ^{4} \theta C_{11}+\cos ^{4} \theta C_{33}+2 \cos ^{2} \theta \sin ^{2} \theta\left(C_{13}+2 C_{44}\right) \\
& C_{66}^{\prime}=\sin ^{2} \theta\left(\frac{C_{11}-C_{12}}{2}\right)+\cos ^{2} \theta C_{44} \\
& C_{55}^{\prime}=\sin ^{2} \theta \cos ^{2} \theta\left(C_{11}-2 C_{13}+C_{33}\right)+\left(\sin ^{2} \theta-\cos ^{2} \theta\right)^{2} C_{44} \\
& C_{15}^{\prime}=\sin ^{3} \theta \cos \left(-C_{11}+C_{13}+2 C_{44}\right)+\cos ^{3} \theta \sin \theta\left(-C_{13}+C_{33}-2 C_{44}\right) \\
& C_{16}^{\prime}=0 \\
& C_{56}^{\prime}=0
\end{aligned}
$$

The choice of specimen orientations listed in Table l simplify the above equations and solution of equations (1) and (2) yields the conventional elastic constants obtained in this work.

Table 2 displays the values of the elastic constants at $27^{\circ} \mathrm{C}$ which were obtained in this work. The density, ρ, of $8.648 \mathrm{~g} \mathrm{~cm}^{-3}$ that was used in reducing the data was computed

